Archive for Carpenter Manufacturing

Components and Processing Solutions for Large Cable Wire Processing.

Wire comes in a multitude of sizes and configurations and is used in a vast number of electrical and electronic devices and assemblies.  In recent years, efforts to reduce overall weight of a wire harness mean smaller wire gauges and thinner wire insulation are being used.   At the same time electrical demands of some products have increased the requirement for larger cable, able to handle a higher current load.  The automotive industry is a prime example of the demands to address both ranges; smaller to bring weight down for more fuel efficiency and larger for emerging applications such as electric car batteries and hybrid fuel cells.

This article will focus on processes and components used in assemblies with large cables.

Defining Large Cable Processing.
For the purposes of this article, we will discuss processing (cut, jacket strip and wire end process assembly) on wire 6 awg and larger. Also multi-conductor cables with individual insulated wires encased in an outer insulation jacket or sheath. In general, as the wire size increases, the production volume decreases.  Production volumes typically dictate whether single or multi stage processing solutions are deployed.  We will outline single and multi stage processing solutions.

Single Processing Tools

Processing tools that perform a single function.

Wire Cut


The Wezag SH Series Hand cutter series features a ratchet action and can cut wire up to 350 mm in diameter.


The Model 31 from Carpenter Mfg is a lever style wire cutter designed to cut wire and other materials.  Featuring a guillotine blade, and adjustable wire guides, the model 31 can cut material 1″ in diameter and 4″ wide.  Wire up to 0 awg can be cut and (material dependent) up to 2/0.



Wire Strip

The Carpenter 72C is a dual blade rotary wire stripper.  The 72C processes a wide range of single and multi-conductor wire.  Quick change wire guides center the wire for nick free processing.




The Carpenter 77E wire stripper is a pneumatic heavy cable wire stripper.  The large wire grippers provide high pulling power for tightly bound insulation and large cross sections.  The 77E uses fully adjustable V blades and quick change wire guides for accurate and repeatable processing.  Form blades can also be used where V blades do not provide the desired results.


The Beri.Co.Megamax is a heavy duty programmable wire stripper capable of multi-stage precision wire stripping for cable up to 25.00 mm wire diameter. The Megamax can process large OD coaxial wire. The Megamax is one of three high capacity multi-stage wire strippers available through our partner Schaefer Megomat.

Wire Crimp


UP60Wire Process Specialties supplies crimp technology for loose and reel fed contacts.  The WDT (Wezag) UP60 shown at the left is a pneumatically activated crimping press that can crimp large terminals such as battery lugs up to 180 square mm.  Interchangeable adaptors with a wide range of die sets provide maximum flexibility.



Multi-Stage Wire Processing

Process machines that perform more than one function during a single machine cycle.


The Compu-Cut 42B is a heavy duty wire and tubing cutter with a 4″ wide blade and 1″ opening.  Flat cable and tubing as well as round wire and multi-conductor cable can be processed using the 42B.  Add additional wire separators and multiple rows of material can be processed to maximize production quantities.  The cutter head is pneumatically operated and the feed unit is electrically motor driven for accurate cut lengths.

The Compu-Cut 36A is an additional option for cutting heavy duty wire. With a special guided blade holder and a standard utility knife blade, the 36A makes precision cuts on large gauge wire as well as semi ridgid tube.

Terminals and Connectors

ETCO is a supplier of terminals and connectors.  ETCO has two manufacturing facilities in the USA for processing reel fed and loose piece heavy duty terminals.  ETCO terminals are manufactured to exacting quality requirements using state of the art fabricating equipment.

 The connector at left is a top post battery terminal.  This is one of many terminal styles for heavy cable and power cords.  ETCO can also supply custom fabricated connectors to your design.

Special Processes

The Judco FLG2 processes heat shrinkable tube around large cable, battery lugs or other connector systems.  The FLG2 is energy efficient and shrinks tube fast with low cost quartz halogen bulbs and mirrors to focus light energy around the material being processed.

These are a few solutions for processing wire and cable harnesses available from Wire Process Specialties, your authority in wire processing, connectors and terminal crimp technology.  Connect Your Way to WPS to see how we can help your company reduce cost and improve the efficiency of your wire assembly processes.

Global Technology Partners in Focus: Carpenter Mfg.

Carpenter Manufacturing has been part of out Global Technology to group for over 15 years. We are proud to be associated with Carpenter and our combined efforts have provided a great number and companies with cost effective processing solutions that have reduced their costs and improved their productivity.

I am pleased to introduce Justin Strong. Justin is the Director of Sales for Carpenter. Justin is a recent member of the Carpenter team, but has made his presence felt with our customers. They appreciate his hard work and value his support. Part of the reason we have produced this Focus series is to get to know the people who customers speak to and interact with. Thank you for spending some time with us today Justin.

WPS: Like WPS, Carpenter is a multi-generation business. Can you provide a brief history of Carpenter Mfg.

JS: Carpenter is a third generation family owned and operated company. It started out of a garage and in the 1960’s moved in to our current factory in Manlius NY. Carpenter has been a leader in the wire processing industry for over 60 years!

WPS: Carpenter is in the Syracuse NY area. Can you describe where the equipment is produced and some of the in-house capabilities of Carpenter.

JS: We manufacture all units in house. Everything from the castings, machining, and assembly of all units. We engineer and do all research and development in the facility. We also make our TwinCone fiberglass wheels here which are a stable of Carpenter

WPS: Describe the range of processing solutions available from Carpenter.


JS: Our products include measure, cut, and strip machines, automatic processors, prefeeders, dereelers, coiling machines, tubing cutters, flat cable, coaxial cable, and mutli-conductor processing machinery

WPS: Carpenter works with a team of local representatives and distributors like WPS. Can you describe how the local support this team provides can help our customers.

JS: We have a great team of knowledgeable and dependable representatives. If they are unavailable you are also able to talk to the team we have here at the factory.  We are able to troubleshoot many applications over the phone but also have staff to make appointments and come in when needed

WPS: Can you describe factory support services to our customers.

JS: We can speak on the phone or through email to help with any sort of trouble shooting. We also have information we can send out as well as replacement parts. Our team has many years of experience in this industry and try to help assist in any way possible

WPS: Any new developments you can share with us today?

JS: Carpenter is always looking for new ways to improve our process and find more solutions to our customers. We have many projects going on. The closest one we have to debuting is our new Coiling Units. In the next month or so Carpenter will be unveiling a single bowl coiling unit capable of coiling long wires. This will be a great feature for companies that are hand coiling wire after it is measured and cut. This will save much labor and help to fully automate our systems.

Thank you again for your time today Justin. WPS appreciates the value that Carpenter brings to our Global Technology Partners group. We look forward to many years of providing efficiency saving and cost reducing solutions to our customers.

For more information on Carpenter processing solutions, Connect Your Way to WPS.

Wire Processing Solutions for Communication Cables

Wire Processing Techniques span a number of assembly categories. In this posting we cover some of the processing methods used in assembling a communication cable.

We will focus on a  few cable types that represent the wider variety of communications cable assemblies and share processing methods.

Coaxial Cable

Coax cable generally has several layers including an outer jacket, woven metal shield and dielectric insulation over a center conductor.  Most applications require two or three stage stripping. This wire is normally crimped into a round coaxial connector. Stripping specifications are specified by the connector manufacturer to match the connector. The connectors are loose piece and have a pin that is crimped to the center conductor and the housing is placed over the wire and crimped on. The trend of coaxial cable is consistent with other wire, that is the range is increasing. We are seeing micro coax cables and at the other end large cable such as LMR400 for large telecomm installations such as cell towers.

Wire Cut to Length.

As this wire is typically stripped in two or three stages in an offline process (see Wire Strip), wire is separately cut to length.

Model 31 manual cutter from Carpenter Manufacturing

Model 31 manual cutter from Carpenter Manufacturing

Wire Strip

As mentioned above, this wire is normally stripped in two of three stages in a fixed strip length that is specified by the connector manufacturer. These multiple stages are processed using a programmable unit which can process multiple strips in sequence. Or separating the two or three processes onto separately adjusted stripping heads. See illustrations below.

Carpenter Model 74

Schaefer ST730 Coaxial Wire Stripper

Schaefer ST730 Coaxial Wire Stripper

Rittmeyer Beri.Co.Max Coaxial Wire Stripper for large cable.

Rittmeyer Beri.Co.Max Coaxial Wire Stripper for large cable.


Crimping coaxial connectors is also a two step process. A terminal is crimped to the center conductor. The connector housing is assembled over the wire and crimped to the insulation. The crimp is normally hex shaped.  Hand or bench equipment for loose piece terminals is used to crimp both the center conductor and connector housing.

Wezag CS30 Hand Crimp Tool

Wezag CS30 Hand Crimp Tool

CS300 Electric Crimper for Loose Piece terminals.

Wezag CS300 Electric Crimper for Loose Piece terminals.


Automated processing of coaxial wire is possible for high volume applications.

RJ11 and RJ45 Cables

Cut and Strip

Cut and strip of RJ11 or RJ45 is possible. This wire is either flat (as pictured below) or round. Flat or radius blades are required to provide the desired nick and scrape free results.

RJ11 Parallel Wire Stripped on Carpenter Compu-Strip 97A.

RJ11 Parallel Wire Stripped on Carpenter Compu-Strip 97A.


Inner conductors and the outer jacket (round cable) can also be stripped stripped using rotary or blade style of wire strippers as illustrated below. Results are application dependent as some wire is irregular in shape.

Carpenter Model 72C

Carpenter Model 78


Modular plugs are loose piece and require a linear action crimp head to crimp (Insulation displacement) modular plugs. The crimp heads are designed to process all leads at one time. Crimping can be done on the CS300 as pictured above or a pneumatic powered crimper like the SSC below.

Multi-Conductor Cables

Cut and Strip

A cut and strip machine as described for the RJ11/45 wire above can also be used to remove the outer jacket of a multi-conductor wire.  Radius blades may be required for some applications. For larger volume applications, wire processing machines are available where the outer jacket and inner conductors are processed at the same time.


In addition to the outer jacket stripping using a bench top rotary as described above, larger cross sections and longer strip lengths may require a heavy duty wire stripper as illustrated below.


Crimping can be loose piece using the CS300 or SSC as described above or reel form terminals on strip.

Side Feed applicator from Applitek.

Side Feed applicator from Applitek.


As shown by the above applications, there are cross over techniques to these three examples. And by extension, other similar communication wire types. Finding the proper mix of processing methods is important to optimize a specific customer requirement. And that requires a partner that has the broad application knowledge and connections to produce the desired result.  WireProcess Specialties is that partner. We have the resources and partnerships you need. Connect Your Way to WireProcess Specialties.

Electrical Wire Processing Technology Expo 2015 in Review: Part Two

This is part two of our Wire Processing Expo 2015 coverage. In part one, we covered a few of the products from ETCO, Schaefer Megomat and Wezag Tools. This issue will complete our coverage with product displays of new technology.

C&S Technologies

C&S a leader in quality validation and monitoring technologies had their whole lineup on display. C&S has a range of solutions available including press calibration, crimp monitoring, crimp cross sectioning and data collection.

Crimp Inspection Station

Crimp Inspection Station


Applitek Technologies

Applitek is a leader in mini style applicators. Side and rear feed applicators were on display as well as a number of special designs.

Side Feed applicator from Applitek.

Side Feed applicator from Applitek.

 Carpenter Manufacturing

In addition to the standard lineup of bench top measure, cutting and stripping solutions, Carpenter displayed the new single and dual coil pans. These coil pans can be integrated into the Compu-Cut or Compu-Strip series machines.

Model 58B pre-feed and 97A on new single bowl coil pan.

Model 58B pre-feed and 97A on new single bowl coil pan.

Carpenter Mfg

Carpenter Mfg Dual Bowl Coil Pan.

Control Laser

WPS’ most recent Global Technology Partner is Control Laser. Control Laser is celebrating 50 years in business in 2015. Control Laser is a leader in marking, etching, engraving and cutting.  On display was the No Nic series hand held and Bench top wire stripper.

The Control Laser No Nic Hand Held wire stripper.

The Control Laser No Nic Hand Held wire stripper.

Lakes Precision

Lakes supplies blades for wire processing machines. A well established supplier of choice to OEM suppliers for their requirements, Lakes provides a full range of blade designs for most OEM suppliers and their respective machines. All from the Lakes modern facility in Wisconsin.

Lakes Blade

We enjoyed the time meeting with customers, sharing ideas and discussing applications. Networking with the leaders in our industry is a valuable time for all. We are ready and able to deploy these solutions and many more to help improve productivity and reduce processing cost. Connect Your Way to WPS today.

Methods of Marking Wire and Cable

Marking wire with an identifying number or character has been a necessary part of wire assembly for as long as anyone can recall. Most electrical standards require a mark identifying a specific electrical circuit for tracability in assembly and service

Methods of marking a wire continue to evolve as processing technology improves. New methods are being introduced to compliment existing processing methods which continue to be effective. The result is a wide range of processing options to meet virtually all applications and production volumes.

We will outline some of the more common processing methods and how they are applied in a production environment.


Label mark

Adhesive labels are an effective method of applying an alpha numeric mark to wire. Processing methods include manual from a box or card, labeling guns and semi automatic systems.  Label adhesion can be affected by the type of wire insulation and quality of the label itself.  Permanence can be affected by the above plus the operating environment of the wire. The operating environment can include temperature, humidity and the presence of chemicals or contaminants). Cost of application equipment can range from zero (manual) to high (semi-automated, integrated with a cut only or wire cut and strip machine).

Hot Stamp

Stamprite Machine Hot Stamp Marker

Hot stamp marking is a wire marking process that dates back to World War II.  Hot Stamp marking uses heat type and thermal marking foil to place a mark to the surface of a wire.  The wire is fed through a guide or anvil and the guide assembly lifts up to contact the heated type surface with the foil sandwiched between the type and the wire.  There are two types of hot stamp markers, separate marking type and wheels.  The separate marking type are arranged in the desired number sequence and mounted into a type holder.  In the case of a wheel type of marker, each wheel represents one character and includes the characters generally used (0-9, A-Z, blank and special marks: right and left arrow and hyphen).   Wheel type are quicker to change over and lend themselves better to manual or automatic processing. Actuation is by lever or foot pedal for manual (offline) processing and integrated into a semi or fully automated solution with actuation controlled by the automation system.

Hot stamp marking is less prone to environmental conditions that can affect the adhesion of a wire label.  Some industries specify other marking methods as the mark is imprinted to the surface of the wire using heat and there are concerns about potential damage to the insulation.  But the cycle time is limited and the heat applied is localized so this processing method is acceptable for the majority of applications.

End marking (same or different number on opposing ends of the wire) and continuous (along the length of the wire at a fixed distance) are normal processing types.  Continuous marking does slow down a semi or fully automated wire processing machine as the wire feed must stop during the stamping process.  The number of marks and distance between marks affects processing speed.

The type of thermal marking foil used, the temperature of the type and impression time are critical factors for a hot stamp mark.  The insulation type and wall thickness normally determine the foil, temperature and cycle time. Marking foil normally comes in rolls and is white or black.

Ink Jet

Ink Jet marking is a newer technology relative to hot stamp.  Ink droplets are sprayed onto the wire surface in a pattern to form a character or character string.  Ink jet marking systems are fully programmable and offer more character options than other methods.  These markers can also interface into the operating system of semi or fully automated processing systems. The interface provides programming and processing communication to the marker.  End or continuous marking is possible but It is important to note that without a programming interface between the processing machine and marker, only continuous marking can be processed.  Line speed is quicker than other processes as the process does stop to apply a mark to the wire.

There are a wide variety of pigmented and non-pigmeted inks available to suit a wide range of insulation types.  In addition, chemicals to clean the ink jet head are required to prevent dried ink from clogging the jets. Special handling of ink and chemicals is required and maintenance personnel are normally trained how to properly apply and store chemicals. Ink jet markers are typically dedicated to one type or ink due to the cleaning process required to transition from one ink type to another.

Permanence to an insulation can be a factor as the ink normally does not penetrate below the insulation surface.  The mark can rub off in some environments.  Using pre or post treatment methods such as plasma or UV curing can improve the adhesion of the ink to the wire.

Heat Shrink

Marking to heat shrink and applying the marked heat shrink to a wire is another method.  The heat shrink tube is marked and cut to length on a dedicated machine.  The marked heat shrink tube is applied to the wire manually using the Judco Focus Lite or heat gun.  The mark to the heat shrink is applied using methods such as hot stamp or ink jet.

Judco Focus Lite

Laser Marking

CLC Wire Mark


Laser marking is an emerging marking technology.  Line speed is slower than ink jet but suited for continuous marking.  Mark characters and character strings are programmable.  A black mark is the primary color as the character is burned into the insulation surface.  A marking method endorsed by military and aerospace.

Wire Process Specialties provides solutions for processing wire harnesses.  Connect Your Way to WPS to see how we can assist your company in their processing problems.

Wire Processing Solutions for Automation Assembly and Electrical Paneling.

Producing a wire assembly can be a simple process such as a simple hook up wire.  It can be as complex as a multi circuit wire harness.  Processing solutions for these wire assemblies can also be simple to complex.  The appropriate solution generally is dictated by the lot and global production size of a particular sub assembly.  Companies who’s core product is a wire assembly generally use a mix of processing solutions from manual hand tools through single process bench equipment to multi process automation.  Companies who process a wire assembly as a sub assembly installed into their core product typically use hand tools and bench top single and multi process equipment. This article focuses on solutions for low to moderate wire assembly requirements.  Companies who process electronics and printed circuit boards also fit in this category.

Manual Assembly Tools


Wire and Tube Cutting

Wezag SH CutterThe Wezag SH series of wire cutters are designed for cutting heavy cable.  Ratchet design and long handles provide high compression force with less physical effort.


31_9497The Carpenter 31 bench top wire and tube cutter is designed to cut wire and tube using a lever action.  The 31 has a 1″ high by 4″ high blade opening allowing for a large range of materials to be processed.  Separators can be added to accurately process multiple rows of material.



Wire Crimping

Featured Product

Wezag AE24-1 Wezag AE 24

The Wezag AE24 hand crimp tool is a universal hand tool designed to crimp ferrules.   A patented design from Wezag offers one universal die set to crimp ferrules from 24 to 10 awg.  No more guessing which crimp opening to use making the crimp process faster and more efficient. Ergonomic design reduces fatigue.


Wezag Tools supplies a full line of hand crimp tooling for open barrel terminals, closed barrel insulated and uninsulated terminals terminals and four point crimp for screw machine style pins.

.Powered Single Process Assembly Tools.

 Wire Stripping

Model 78
The Carpenter 78 is a pneumatic wire stripper which can process a wide range of wire sizes.  Using easily adjustable knobs to set the wire size, strip and pull lengths, the 78 can quickly change from one wire size to the next making small lots much more cost effective.  Other options for wire stripping include rotary wire strippers to efficiently strip the wire and twist the strands.


Terminal Crimping


The Carpenter Accu-Crimp 62 is pneumatically powered and can crimp a wide range of insulated and uninsulated terminals.  The die opening is always closed for safety purposes and is opened to load the terminals by pressing the upper knob.

Wezag CS 200

The Wezag CS200 is an electric powered crimp machine for loose piece terminals.  The CS200 can accept crimp heads for standard Wezag crimp tools providing the ultimate in flexibility.

Powered Multi Process Assembly Tools.

Wire/Tube Measure and Cut

Carpenter Compu-Cut 42C
The Compu-Cut 42C is a high performance wire and tube cutting machine with a large opening to process heavy cable, large OD tube, or several rows of material.  The 42C uses high accuracy feed motors and a powerful pneumatic cutter head.  In addition to the 42C, the Compu-Cut 33 is a smaller cutter for light duty wire and tube processing.

Wire Cut and Strip


Compu-Strip 97A

For more information, please view our product focus on the 97A.

For high current or heavy cable applications, please refer to our article on large cable processing.

Other processing solutions include wire marking, ultrasonic wire splicing and shrinking of heat shrinkable tube.

Wire Process Specialties is equipped to supply your requirements for wire processing from simple manual tools to semi-automation and beyond.  Connect Your Way to WPS to find out how we can apply our technology to your processes to improve efficiency and reduce costs.

Terminal Crimping Technology

Crimping terminals is a common wire assembly process dating back several decades.  Over the years processing methods and procedures were established and improved to assure optimum crimp quality and electrical conductivity of the wire to terminal connection.  This article will cover the common crimp types, crimp methods used to provide a quality wire to terminal connection and migration path from manual processing to automation of the crimp process.

Crimp Types

Closed Barrel: Closed barrel terminals have a round crimp barrel that surrounds the wire being crimped.  There are two typical open barrel configurations, formed by progressive stamping process with a seam where the two sides come together and form a circle and solid machines connector where the crimp barrel is seamless, normally produced on a screw machine. Closed barrel terminals come insulated or non-insulated and are in loose form or on a reel. Examples of closed barrel terminals include rings, quick connects, ferrules and solid pins used in aerospace applications.

Open Barrel: Open barrel terminals are generally U shaped prior to crimping and are crimped around the terminal in a B shape or overlapped.  Open barrel terminals are generally available mounted on a reel but in some cases are available in loose form for lower volume processing. In addition to a barrel for the wire, some open barrel terminals include an insulation support for applications for additional strain relief (from vibration or wire movement).  Open barrel terminals normally are un-insulated but in some cases have a partially loaded insulator pod which is inserted over the terminal during the crimp process.


An example of this terminal type is the ETCO pre-insulated terminal series.


Crimping Methods

Wezag Crimp Tool 1Hand Tools: A hand tool is used in low volume or prototype crimp applications. Tooling in a hand tool can be fixed and non-removable from the hand tool frame or can be removable. Crimp dies are available for open barrel and closed barrel terminals  A reliable method of crimping wire to terminals with good repeatability.  As volumes increase, repeated processing of terminals with hand tools can cause strain on an operator.

Bench Top Crimping: Crimping terminals with bench top crimping equipment provides moderate volume processing of loose piece and reel mounted terminals.

Wezag CS 200With loose piece terminals, the terminal and wire are hand loaded to a crimp nest and the operator cycles the press using a foot pedal or palm button.


Wezag CS200                                                          Carpenter Accu-Crimp 62

applicators2Reel mounted terminals are processed using a crimp press and applicator.  The applicator has a mechanical or pneumatic feed which positions the terminal on the crimp anvil.  The operator presses a foot pedal and the crimp press cycles, forming the terminal over the wire and advancing the next terminal for further processing.  A wide range of applications can be processed with bench top crimping equipment by the utilization of different press tonnages and applicators/die sets (fixed and quick change).

Automated Crimp Processing: Automated processing adds a wire cut and strip element to the crimp process.  The most basic form is the stripper-crimper which adds a wire stripping unit to a bench crimp press to strip the end of the wire and presenting the wire to the crimp nest for crimping.

Automated crimp centers process the wire from its source in a barrel or reel, cut and strip the wire to length and present it to a crimp press for crimping.  Reel fed applicators are the same as the bench top type.  In the case of loose piece terminals, a vibratory bowl is used to orient the terminals and present to the crimp press for crimp processing.

An example of an automated processing crimp center is the Megomat Primo XLT .

Manual to Automated Crimp, a Migration Path

As volumes increase, the need to automated also increases.  On occasion, the increase is dramatic, requiring a greater step through the automation migration path.  But normally the increase is controlled and slower so migration can take a multi step approach over time.

Hand Tool to Bench Top Migration: Migrating from a hand tool to power assisted bench top crimping requires a bench top crimping platform like the Accu-Crimp 62 or electric powered CS200 from Wezag Tools (both pictured above).

Wezag UP60

Heavy Duty Applications use higher tonnage to provide the power needed toprocess large terminals.  The Wezag UP60 is pneumatic powered and provides over 7 tons of crimp force.

Non-Fixed hand tool die sets may be removed and compatible with bench top crimping units.  This reduces the overall cost of the migration from hand tools to powered bench top equipment.

Bench Top to Automated Process Migration: Migrating from a bench top to automated processing machine like the Primo XLT or Uno multi-station machines is simple and straightforward.  Mini style applicators used in a bench press application as pictured above can be mounted directly from a bench top press to the press on the automation system.  Some applications require a different feed cam to feed the terminal on the press downstroke to allow for the robotic arm to swing into position with no interference from the terminal.

However, in the case of loose piece terminals, separate presses with integrated vibratory bowl fed systems may be required as they are not a standard set up on an automated machine.

Loose Piece to Reel Mounted terminal Migration: Converting from loose piece processing to reel fed terminals requires a crimp press and applicator as described above.  The first step is determining the compatible terminal on reel equivalent. If a quick change mini applicator can be used, then the crimp press can be quickly changed from one terminal type to another simply by switching out the terminal applicator.

Crimp Process Validation and Control

Assuring an adequate quality and repeatable crimp and crimp process is common among all crimping methods. Non Destructive and Destructive crimp testing is used as pre-process and in-process validation methods.  For more information on crimp quality process and validation, please refer to our three part series which can be found on our News Channel: Part One (crimp validation), Part Two (In Process Crimp Monitoring) and Part Three (Machine Process Capability and Calibration).

Wire Process Specialties has over 30 years of experience in processing of wire and cable including crimp technology.  Connect Your Way to WPS.  Our vision is to help our customers reduce processing costs and increase production efficiency.

Rotary vs V Blade Wire Stripping.

Wire stripping is a mechanical insulation separation process which can be performed by various methods.  Two of the most common methods are Rotary Blade and V Blade. This article will outline these two methods, the advantages and drawbacks.

Rotary Blade.

A wire stripper with a rotary blade has one or two blades centered around an opening that the wire is pushed through.  A wire guide sized to  the wire OD ensures the wire does not rotate in an oblong fashion and cause damage to the inner conductors.  The blades are adjusted to match the ID of the wire without nicking the inner conductors.  During processing, the blades close around the wire and rotate to slit the jacket. A number of revolutions may be required to separate the insulation slug from the wire.  This depends on the thickness and insulation type.

The rotary blades provide a very clean shoulder on the insulation.  The rotary action of the blades also twists the stands of single conductor stranded wire, which helps in the insertion of the wire to a terminal block or PC board hole prior to wave soldering.  Non concentric wire can be problematic and cause less than desirable results in nicked strands or jagged separation of the insulation. Below is the operation of the Carpenter 72C which shows the action of the rotary blade to strip wire.

V Blade.

The V blade configuration provides good quality wire stripping of a large range of wire cross sections. This blade style is used on bench top single process wire strippers, automated cut/strip machines and fully automated work centers such as the Schaefer Megomat Primo XLT.  Adjusting a V blade wire stripper is fast and changeover to a different wire takes only a few seconds.  The angle of a V blade is typically 90 degrees.  This angle is generally accepted as the best providing optimum overall results on a wide rage of wire sizes.  Narrow entry angles such as 30 or 60 degree are also used but would be deployed on specific applications. The V blade strips the wire at four points and not the whole surface as a rotary blade does.  Special configurations like the Lakes patented Uni-V blade adds a secondary angle which provides more contact to the blade.

Other V blade configurations are full radius and tangent radius V.  The blade illustrated above is full radius blade for a Carpenter Compu-Strip 97A.  This blade is sized for a specific wire cross section.  Adjacent wire sizes cannot be stripped with a radius V blade.

The illustration above shows the Tangent radius (Lakes Precision TA-V).  The entry angle lines meet the arc at a tangent point. This type of blade, when closed, presents a diamond shaped edge profile.Advantages: By adjusting cutter head shut height, ( if insulation material and wall thickness allow), you can process
adjacent wire sizes with the same blade, or you could compensate for off-center wire extrusions.

The video below illustrates the operation of a 90 degree V blade in a Carpenter 77E heavy duty wire stripper.

The V blade profile with its variations can process a large variety of wire sizes and insulation types.  The four point contact on the 90 degree V blade provides a lesser quality shoulder than the rotary but can be offset by the use of a full or tangent radius V blade.

Wire Process Specialties has over three decades of experience providing wire processing solutions.  How can we help you optimize your production processes with a component or processing equipment solution?  Connect Your Way to WPS today to begin the dialogue and the path to lower processing costs and higher production efficiency.



Wire and Cable Connector – Wire Pre-Feeding.

In the July/August issue of the Wire and Cable connector, valued Global Technology Partner: Lakes Precision published an article on Wire Pre-Feeding. This is part one of a series on Wire Processing Essentials.

Pre-Feeding is an essential pre-process to processing a wire or cable. A powered or passive pre-feed provides assistance when pulling wire from a reel. A pre-feed reduces the back pressure from the dead weight of a reel. The resistance from a reel is the primary cause of piece to piece variation in overall cut length and strip length. A pre-feed also reduces the strain on the feed drives of the primary processor (cut or cut and strip), prolonging the life of the feed drives.

To view the Lakes article in Wire and Cable Connector, click here. To visit Wire and Cable Connector and subscribe to the digital and print editions at no charge, click here.

The Carpenter 58B powered pre-feed in the video above can be operated with the Carpenter Compu-Cut or Compu-Strip machines like the Compu-Cut 97A. For lighter duty processing, the Carpenter 56A can be mounted to a table.

Connect Your Way to WPS to hear more about our Global Technology solutions for wire processing.

Processing Options for Transformer Manufacturing.

Wire Process Specialties serves many industries that require assembly processes for electrical and electronics.  One industry that WPS has served for a number of years is in Transformers and Magnetics.  WPS supplies a multiple of solutions for the processing of magnet wire and coil winding from simple wire end processing to complex automation for transformer assembly.

Magnet Wire Stripping

The Carpenter Magnet Wire Stripper series provide cost effective methods to remove the enamel from magnet wire.  Models include the conical wheel 88F shown above for stripping ultra-fine wire down to 48 awg, the 27F with a collet stripping head and available extension wand and the 14B for heavy duty round and rectangular wire.

 Material Cutting

 The Compu-Cut 42B is a heavy duty cutter for a multitude of uses.  Cutting heat shrink, pvc and fibreglass tube as well as wire and irregular shaped material can be processed with the 42B. The 42B is part of the Compu-Cut machine series which includes the 33 and 36A models.

All consumable and spare parts for Carpenter machines are available through WPS.  For more information on the Carpenter Compu-Cut machines and Magnet wire stripping line Connect Your Way to WPS or visit

 Heat Shrink Tube Processing


 The heat gun has been a standard method of processing heat shrink for decades.  The Judco Focus Lite line is a cost effective method of processing heat shrink of various sizes. The energy efficient halogen bulbs operate on demand for fast and efficient shrinking of heat shrink tube.   Several models are available to shrink tube from 5/8″ to 1.5″ OD to 15.5″ long.  Connect Your Way to WPS or visit for more information.

Other Processing Options

Applicators and crimping presses for reel fed terminals, terminals and connectors,  quality validating and monitoring systems for crimping, wire marking, wire cut and strip equipment for stranded and multi-conductor wire.

Connect Your Way to WPS to discuss your assembly processes for your products.  We have over three decades of experience serving our valued customers from coast to coast.